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This paper is a natural continuation of Abbott et al. (2000) further generalizing
the Buchberger-Möller algorithm to zero-dimensional schemes in both affine and
projective spaces. We also introduce a new, general way of viewing the problems
which can be solved by the algorithm: an approach which looks to be readily
applicable in several areas. Implementation issues are also addressed, especially
for computations over Q where a trace-lifting paradigm is employed. We give a
complexity analysis of the new algorithm for fat points in affine space over Q .
Tables of timings show the new algorithm to be efficient in practice.

1. Introduction

Nowadays it is common knowledge that Gröbner bases and Buchberger’s Algorithm are
key ingredients in Computational Commutative Algebra, and are hence fundamental tools
for applications in several fields both inside and outside Mathematics (see Buchberger
(1985)). It is also well-known that the computation of a Gröbner basis can be time
consuming due to its intrinsic complexity. Therefore many attempts have been made
in recent years to find special situations in which the usual computational scheme of
Buchberger’s Algorithm can be improved.

For instance, in a recent paper (see Abbott et al. (2000)) we addressed the problem of
computing the vanishing ideal of a set of reduced K -rational points, where K is a field. In
particular, we studied the case K = Q . Our investigation was based on the Buchberger-
Möller Algorithm (BM-algorithm) which improves the traditional scheme for computing
intersections of ideals of points considerably (see Buchberger and Möller (1982)).

The first question we want to address now is the following. Is there a more general com-
putational problem one of whose specializations is solved by the classical BM-algorithm?
For this we let P = K[x1, . . . , xn] be the polynomial ring in n indeterminates over a
field K , we let M be a P -module, and we let ϕ : P −→ M be a homomorphism of
P -modules. The task is to compute Ker(ϕ) efficiently.

Let us see how this general setting specializes to the case treated by the classical BM-
algorithm. Let p1, . . . ,ps ∈ An

K and m1, . . . ,ms be their associated maximal ideals. Let
M = ⊕s

i=1P/mi
∼= Ks , and let ϕ : P −→ M be defined by ϕ(f) = (f(p1), . . . , f(ps)).
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Then the problem of computing Ker(ϕ) is exactly the problem of computing
⋂s

i=1 mi ,
and indeed a good solution is the BM-algorithm.

A more general instance of the above computational problem is the computation of the
vanishing ideal of a zero-dimensional scheme. Let m1, . . . ,ms be maximal ideals in P ,
and for each i let qi be an mi -primary ideal. Then I = q1 ∩ · · · ∩ qs is the vanishing
ideal of some zero-dimensional subscheme X ⊆ An

K . It is also the kernel of the canonical
P -linear map π : P −→ ⊕s

i=1P/qi . In this case the methods based on Buchberger’s
Algorithm tend to be rather inefficient in practice and faster methods are needed.

If the ideals q1, . . . , qs are described by the vanishing of certain “dual functionals”, a
suitable adaptation of the BM-algorithm was given in Marinari et al. (1993). But to find
those functionals from systems of generators of q1, . . . , qs does not seem easy, especially
if K has finite characteristic. A more direct approach was suggested in Lakshman (1991),
but the cost of computing local normal form vectors and the problem of the growth of
coefficients in the case K = Q were ignored. The related problem of computing minimal
generators has been studied in Cioffi (1998) and Cioffi and Orecchia (2001).

To get a better grip on this situation, and in order to put it in a suitable general
framework, we start in Section 2 by studying K -linear, surjective maps ϕ : P −→ Kµ ,
where µ ≥ 1; this was partly inspired by some ideas given in Mourrain (1999), and is
further extended in Robbiano (2001). We show that Ker(ϕ) is a zero-dimensional ideal
in P if and only if ϕ maps a polynomial to its normal form vector with respect to a
tuple of polynomials whose residue classes are a K -vector space basis of P/Ker(ϕ).
The important case is when ϕ is explicitly computable. For instance, if P/Ker(ϕ) is
generated by the residue classes of the terms in the complement of some leading term
ideal and if ϕ is constructed using the normal form map, it is explicitly computable. But
we shall also see that there are cases where ϕ is explicitly computable, but not of this
type. The “change of basis” between two such maps having the same kernel is achieved
by a generalization of the well-known FGLM-algorithm.

Then we present our first generalization of the BM-algorithm in Section 3. It computes
the vanishing ideal of a zero-dimensional scheme X ⊆ An

K as above. The zero-dimensional
ideals whose intersection we want to compute are represented by normal form vector
maps. To compute the local normal form vectors more efficiently, we show how to use a
method similar to the one introduced in Faugère et al. (1989): the ideals Ik are repre-
sented by the image of 1 in the basis of P/Ik ∼= Kµk and by the matrices representing the
multiplications by x1, . . . , xn in this basis. Then we exploit the fact that the algorithm
operates only on terms of the form t = xjt

′ for which the local normal forms of t′ are
already known.

As in Abbott et al. (2000), we are also able to extend the method to the computation
of the vanishing ideal of a zero-dimensional scheme X ⊆ Pn

K . Here we have to intersect
one-dimensional homogeneous saturated ideals in K[x0, . . . , xn] . By proceeding degree
by degree, we can reduce the problem to computations involving finite dimensional vector
spaces. The problem is then to find a good stopping criterion which says that the result
is complete after we have reached a certain degree. For the case of zero-dimensional
subschemes of Pn

K , we give two stopping criteria and the projective version of the BM-
algorithm in Section 4.

As mentioned above, if we consider the problem of computing the vanishing ideal of
X ⊂ An

K over the base field K = Q , we run into the additional problem of coefficient
growth. This problem is addressed in Section 5, where we present a version of the general
BM-algorithm using an approach a bit like the method of Gröbner traces. The brunt
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of the computation becomes the solving of some linear systems over Q , a well-studied
problem for which efficient algorithms already exist.

One case which is particularly important for applications in Algebraic Geometry is
the case of schemes containing fat points: a fat point is a point in Supp(X) whose local
ideal is a power of the associated maximal ideal. We examine this situation in Section 6.
We exhibit particularly efficient normal form vector maps for this case, and proceed to
analyse the complexity of the algorithm of Section 5 assuming use of these maps. We
find that for simple points the new algorithm matches the complexity of the less general
modular algorithm given in Abbott et al. (2000).

Although we are not going to address them directly in this paper, we mention that for
the general computational problem described above there are other cases where suitable
generalizations of the BM-algorithm appear feasible. For instance, if we view M = P ′ =
K[y1, . . . , ym] as a P -module via a K -algebra homomorphism ϕ given by ϕ(xi) =
fi(y1, . . . , ym) for i = 1, . . . , n , then the general task specializes to the implicitization
problem. Again it is known that the general implicitization problem is hard, but there are
special cases which can be treated more directly. For instance in the case of toric ideals,
an ad hoc approach was used in Bigatti et al. (1999) to tame the intrinsic difficulties of
elimination theory.

All algorithms described in this paper are implemented in the system CoCoA which is
available from http://cocoa.dima.unige.it (see Capani et al. (1998)). Some experi-
mental data based on our implementations are reported in Section 7.
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2. Theoretical Preliminaries

In this section we describe some material which forms the theoretical background of our
algorithms. For an extended presentation of this material we refer to Robbiano (2001).
Throughout we assume that P = K[x1, . . . , xn] is a polynomial ring over a field K
and that Tn is the monoid of terms (power products) of P . At various points it will
be handy to refer to a basis for Kµ , so let e1, . . . , eµ be one with the convention that
(a1, . . . , aµ) ∈ Kµ refers to the vector

∑
i aiei .

Example 2.1. Let I ⊂ P be a zero-dimensional ideal, let µ = dimK(P/I), let σ be
a term ordering on Tn , and let Oσ = (t1, . . . , tµ) be a tuple whose components are
precisely the terms in Tn which are not contained in the leading term ideal LTσ(I).
By the Macaulay Basis Theorem (see for instance Kreuzer and Robbiano (2000), Thm.
I.5.7), the tuple (t1, . . . , tµ) of the residue classes of the elements of Oσ is a K -basis
of P/I .

Let G be a σ -Gröbner basis of I . For every polynomial f ∈ P , the Division Algorithm
with respect to G yields its normal form NFσ,I(f) =

∑µ
i=1 aiti , where a1, . . . , aµ ∈ K .

The canonical surjective map π : P −→ P/I satisfies π(f) =
∑µ

i=1 aiti . Our choice of
basis for P/I also fixes a canonical isomorphism P/I −→ Kµ , and combining this with
π we obtain a K -linear, surjective map NFVOσ

: P −→ Kµ sending f 7→ (a1, . . . , aµ)
and whose kernel is precisely the ideal I .

Example 2.2. Let {(0, 0), (0,−1), (1, 0), (1, 1), (−1, 1)} ⊂ A2(Q), let I ⊂ P = Q[x, y]
be the vanishing ideal of this set of points, and let O = (1, x, y, x2, y2). Since the
evaluation matrix of those terms at the given points has determinant −4, we conclude
that the tuple (1, x, y, x2, y2) is a Q-basis of P/I . Therefore, as before, there is a
K -linear, surjective map NFVO : P −→ K5 which sends every polynomial f to the
uniquely defined tuple (a1, a2, a3, a4, a5) such that the residue class of f in P/I is
a1 + a2x+ a3y + a4x

2 + a5y
2 .

But the map NFVO is not induced by a map of the form NFσ,I , since the components
of O do not form a set T2 \LTσ(I) for some term ordering σ . To prove this, consider the
polynomial f = x2 +xy−x− 1

2y
2− 1

2y . It is in I , since it vanishes at the five points. For
any term ordering σ , we have x2 >σ x and y2 >σ y . If x >σ y , then x2 >σ xy >σ y

2 .
And if y >σ x , then y2 >σ xy >σ x

2 . This means that there are only two possibilities
for the leading term of f : either it is x2 or y2 . In either case we have that LTσ(f) is
both a component of O , and an element of LTσ(I).

For instance, examples of this second type, which do not come from Gröbner bases,
arise in the study of Design of Experiments — see Caboara and Robbiano (2001). As
has already been noted by Stetter, and more recently recalled in Mourrain (1999), such
non-Gröbner examples are also important for symbolic-numeric solving. These situations
motivate the following definition.

Definition 2.3. Let I be a zero-dimensional ideal in P , let π : P −→ P/I be the canon-
ical map, let µ = dimK(P/I), and let O = (t1, . . . , tµ) be a tuple of polynomials such
that O = (t1, . . . , tµ) is a basis of P/I as a K -vector space. The vector (a1, . . . , aµ) ∈ Kµ

such that π(f) = a1t1 + · · ·+ aµtµ is called the normal form vector of f with respect
to O and is denoted by NFVO(f). The corresponding map NFVO : P −→ Kµ is called
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the normal form vector map with respect to O . To ease notation the dependence of
NFVO on the ideal I is not written out.

Clearly for actual computations we shall need explicit normal form vector maps, i.e.
ones given by concrete algorithms. The next step is to characterize zero-dimensional
ideals via normal form vector maps.

Proposition 2.4. Let µ ≥ 1 , and let ϕ : P −→ Kµ be a K -linear, surjective map. The
following conditions are equivalent.

a) The kernel of ϕ is a zero-dimensional ideal in P .
b) The map ϕ is a normal form vector map, i.e. ϕ = NFVO for some choice of I

and O .
c) The map ϕ is the composition of a normal form vector map NFVOσ , where Oσ is

the complement of some leading term ideal, with a linear base change Kµ −→ Kµ .

Proof. First we show that a) ⇒ b). For every i = 1, . . . , µ we select a polynomial ti ∈ P
such that ϕ(ti) = ei ∈ Kµ . Hence we define a K -linear map ψ : Kµ −→ P such that
ϕ ◦ψ is the identity on Kµ . Let us write I for the zero-dimensional ideal Ker(ϕ). Since
P = I ⊕ ψ(Kµ), every polynomial f can be uniquely represented as f = g +

∑µ
i=1 aiti ,

where g ∈ I and a1, . . . , aµ ∈ K . Thus we get ϕ(f) = ϕ(g) +
∑µ

i=1 aiϕ(ti) =
∑µ

i=1 aiei ,
and therefore ϕ = NFVO for O = (t1, . . . , tµ).

Now we prove that b) ⇒ c). Assume there exist an ideal I and a tuple O = (t1, . . . , tµ)
of polynomials for which O = (t1, . . . , tµ) is a basis of P/I as a K -vector space. Let σ be
a term ordering on Tn , and let Oσ = (τ1, . . . , τµ) be a tuple whose components are the
terms in Tn\LTσ(I). As already pointed out in Example 2.1, the tuple Oσ of the residue
classes (τ1, . . . , τµ) of the elements of Oσ is a K -basis of P/I . Therefore O = Oσ ·M
for some invertible matrix M . Hence by their definitions NFVO(f) = M ·NFVOσ (f) for
every f ∈ P ; that is ϕ is the composition of NFVOσ with the change of basis given by
the matrix M .

Now we prove that c) ⇒ a). Assume c). Clearly the kernel of the composition is the
kernel of NFVOσ

. This latter is precisely the ideal implicit in the normal form vector
map, which is a zero-dimensional ideal. ut

This proposition allows us to represent a zero-dimensional ideal in our later algorithms
by a normal form vector map. Given two normal form vector maps corresponding to the
same zero-dimensional ideal, we can change from one to the other as follows.

Remark 2.5. Let I ⊂ P be a zero-dimensional ideal, and let O = (t1, . . . , tµ) be a tuple
of polynomials whose residue classes form a basis of P/I as a K -vector space.

a) Given an explicit NFVO , if we have a tuple Oσ = Tn \ LTσ(I) for some term
ordering σ , we can calculate NFVO(t) for all components t of Oσ , and we obtain
the matrix M in the proof of Proposition 2.4. Thus we can compute NFVOσ

(f)
for all f ∈ P without having to find a σ -Gröbner basis of I .

b) Given an explicit NFVO and a term ordering σ , but no corresponding tuple Oσ ,
we can still find such a tuple without resorting to Buchberger’s Algorithm. Namely,
we can apply the Algorithm GBM of Theorem 3.1 in the case s = 1. We get a
Change of Base Algorithm which generalizes the standard FGLM-algorithm (see
Faugère et al. (1989), Section 3), because it does not require a Gröbner basis as
input.
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We conclude with two results we shall need in the next section where we show how to
represent a zero-dimensional ideal using commuting matrices. These results are inspired
by Mourrain (1999).

Proposition 2.6. Let µ ≥ 1 , let ϕ : P −→ Kµ be a K -linear, surjective map whose
kernel is a zero-dimensional ideal I in P , and let w = ϕ(1) . Then there exist uniquely
defined, pairwise commuting matrices M1, . . . ,Mn in Matµ(K) such that

a) ϕ(xif) = Mi · ϕ(f) for all f ∈ P and all i = 1, . . . , n .
b) ϕ(f) = f(M1, . . . ,Mn) ·w for all f ∈ P .

Proof. We explain how to construct the matrices Mi ; the rest of the proof is simple
algebra. Let g1, . . . , gµ be polynomials such that ϕ(gk) = ek ∈ Kµ for k = 1, . . . , µ . We
define Mi to be the matrix whose columns are the vectors ϕ(xig1), . . . , ϕ(xigµ). ut

Definition 2.7. The pairwise commuting matrices M1, . . . ,Mn described in the above
proposition are called the multiplication matrices of ϕ .

Here is a sort of converse to Proposition 2.6

Proposition 2.8. Let µ ≥ 1 , let w ∈ Kµ be a non-zero vector, and let M1, . . . ,Mn be
pairwise commuting matrices in Matµ(K) .

a) There exists a unique map ϕ : P −→ Kµ with the following properties:
a1) ϕ(1) = w ,
a2) ϕ is K -linear,
a3) ϕ(xif) = Miϕ(f) for all f ∈ P and each i = 1, . . . , n .

b) We have ϕ(f) = f(M1, . . . ,Mn) ·w for all f ∈ P .
c) The kernel of ϕ is a zero-dimensional ideal.

Proof. The first part of the proof is straightforward algebra with the observation that
the commutativity of the matrices Mi is necessary for ϕ to be well-defined.

To show that Ker(ϕ) is an zero-dimensional ideal, let f ∈ Ker(ϕ). For any xi we
have ϕ(xif) = Miϕ(f) = 0. By induction and the K -linearity of ϕ , we deduce that
gf ∈ Ker(ϕ) for any g ∈ P . Now it is clear that Ker(ϕ) is an ideal; it is zero-dimensional
because P/I is a finite-dimensional K -vector space. ut
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3. The Generalized BM-Algorithm

In Section 2 we established a correspondence between zero-dimensional ideals and
normal form vector maps. In particular, we showed how knowledge of the Gröbner basis
of such an ideal enabled us to determine a corresponding normal form vector map NFVO .
In this section we present a generalization of the BM-algorithm which determines directly
a Gröbner basis for the intersection of a finite number of zero-dimensional ideals where
each ideal is represented by a normal form vector map.

In the following, let K be a field, let P = K[x1, . . . , xn] , let s ≥ 1, and for i = 1, . . . , s
let NFVOi

: P −→ Kµi be a normal form vector map representing a zero-dimensional
ideal Ii ⊆ P . Recall that this means µi = dimK(P/Ii) and Ii = Ker(NFVOi), and that
Oi is a set of polynomials whose residue classes form a K -basis of P/Ii .

Our goal is to compute a Gröbner basis of the ideal I =
s
∩

i=1
Ii . We present here the

generalized BM-Algorithm: in outline, we consider all power products in increasing order
(according to the term-ordering), for each power product we seek a linear dependency
of its normal form vector on those of smaller power products, if there is a dependency
then we get a new Gröbner basis element, otherwise we place the power product in the
quotient basis for use in finding future linear dependencies.

Theorem 3.1. (Algorithm GBM)
Let σ be a term ordering on Tn . Consider the following instructions.
GBM1 Start with empty lists G = [ ] , O = [ ] , a list L = [1] , and a matrix M = (mij)

over K with µ = µ1 + · · ·+ µs columns and initially zero rows.
GBM2 If L is empty, return the pair [G,O] and stop. Otherwise choose the power

product t = minσ(L) and remove it from L .
GBM3 Compute the vector v = NFVO1(t)⊕ · · · ⊕NFVOs

(t) ∈ Kµ .
GBM4 Reduce v against the rows of M to obtain

v∗ = v −
∑

i

aimi with ai ∈ K

where mi = (mi1, . . . ,miµ) is the ith row of the matrix M .
GBM5 If v∗ = 0 , then append the polynomial t−

∑
i aiti to the list G , where ti is the

ith power product in the list O . Continue with step GBM2.
GBM6 Otherwise v∗ 6= (0, . . . , 0) , so append the vector v as a new row to M . Append

the corresponding term t to the list O . Add to L those elements of {x1t, . . . , xnt}
which are neither multiples of an element of L nor of {LTσ(g) | g ∈ G} . Continue
with step GBM2.

This is an algorithm which computes a pair (G,O) such that G is a list of polynomials
in P forming the reduced σ -Gröbner basis of I =

s
∩

i=1
Ii and O is a list whose components

are precisely the elements of Tn \ LTσ(I) .

Proof. In Algorithm GBM the reduced Gröbner basis is accumulated into the variable
G ; in the main loop G contains those elements whose leading term is smaller than t .
A quotient basis of power products in accumulated into (O), it contains only power
products known not to be reducible by any Gröbner basis element; at the end of the
algorithm is contains all such power products. The list L helps identify quickly the next
power product to consider in step GBM2.
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First we exhibit termination. In each iteration either step GBM5 is performed or
step GBM6. By its construction the matrix M always has linearly independent rows, and
hence step GBM6, which adjoins a row to M , can be performed only finitely many times
(at most µ times). By Dickson’s lemma step GBM5 can be performed only finitely many
times; the noetherianity of P implies this too. Thus the algorithm performs only finitely
many iterations, and each iteration clearly involves only a finite amount of computation.

To exhibit correctness we use induction on the iterations of the algorithm: we shall
show that if the values of G and O are correct at the start of an iteration then they are
still correct at the end of the iteration. Let B denote the reduced Gröbner basis for the
intersection, and Q = Tn \ LTσ(I) be the set of all power products not divisible by the
leading term of some element of B .

If L is not empty then it contains a minimal element t . So at the start of the iteration
we have that the list G contains all elements of B whose leading term is σ -smaller than
t , and the list O contains all elements of Q which are σ -smaller than t .

We must show that in each iteration the power product t is either added to O or
gives a new reduced Gröbner basis element as appropriate. The case t = 1 is trivial.
Now consider the case t > 1. In step GBM5, if the vector v∗ is zero then the polynomial
t−

∑
i aiti is an element of Ii for each i , and thus also of their intersection. Consequently

B contains an element whose leading term divides t , but by definition of L no element
of G does this. Hence B must contain an element whose leading term is exactly t ; and
this element is added to G in step GBM5.

Should we reach step GBM6 then t is an element of Q because any element of B
whose leading term divides t would have to have leading term exactly t (by definition
of L), and so such element would necessarily be of the form t −

∑
biti which would

correspond to a linear relationship between v and the rows of the matrix M , and yet
the reduction to a non-zero vector in step GBM4 proved that no such relationship exists.

We affirm that the list L is updated in such a way that its σ -smallest element is always
the σ -smallest power product greater than t and not divisible by the leading term of
some element of G . ut

Now we know how to compute the intersection of the kernels of finitely many explicit
K -algebra homomorphisms. For instance, the theorem applies when we have Gröbner
bases of two zero-dimensional ideals I1 and I2 with respect to different term orderings.
It also applies when we have quotient bases which are not of type Tn \LTσ(Ii) but which
do yield a normal form vector map NFVOi

such as in Example 2.2.

Remark 3.2. Our presentation of Algorithm GBM favoured simplicity over efficiency. In
reality it is better to build the matrix M in triangular form by appending the vector v∗

in step GBM6 and maintaining a list O∗ to which we append t −
∑

i aiti rather than
just t in step GBM6. The elements of the list O are then merely the leading terms of
the corresponding elements in O∗ . In this way step GBM4 runs faster.

In the last part of this section we describe an optimization of Theorem 3.1 which is
based on the following remark (also noted in Faugère et al. (1989)).

Remark 3.3.
In step GBM3 the power product t is either 1 or of the form t = xjt

′ for some
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power product t′ ∈ O . By storing NFVOi
(t′) for each t′ ∈ O as the algorithm proceeds,

we may compute the vector v cheaply by concatenating the images of each NFVOi
(t′)

under the linear transformation on Kµi which corresponds to the multiplication by xj

on P/Ii . This is simple if each Ii is represented by a vector wi and multiplication
matrices Mi1,Mi2, . . . ,Min . Here the commutativity of the multiplication matrices given
in Proposition 2.6 is crucial.
GBM3bis If t = 1 then put v = w1 ⊕ · · · ⊕ws . Otherwise t = xjt

′ for some indeter-
minate xj and some t′ ∈ O , in which case put v = M1jv′1 ⊕ · · · ⊕Msjv′s where
v′1 ⊕ · · · ⊕ v′s is the vector stored when processing t′ .
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4. The General Projective BM-Algorithm

In this section we shall develop along another direction the material explained in Sec-
tion 2. In order to use it to compute intersections of homogeneous ideals, we shall need to
extend those methods to the following general setting. Note that throughout this section
all ideals are implicitly saturated and of algebraic dimension one (i.e. corresponding to
geometrical objects of projective dimension zero).

Let K be a field and P = K[x0, . . . , xn] . Let P = ⊕d∈NPd be standard graded, i.e.
graded by deg(x0) = · · · = deg(xn) = 1, and let I ⊆ P be a homogeneous ideal. For
every d ∈ N , let Od = (td1, . . . , tdµd

) be a tuple of homogeneous polynomials of degree d
such that the residue classes {td1, . . . , tdµd

} under the canonical map πd : Pd −→ Pd/Id
form a basis of Pd/Id as a K -vector space.

As in Section 2, we introduce the notion of the normal form vector NFVOd
(f) for

f ∈ Pd and the map NFVOd
: Pd −→ Kµd . The tuple (NFVOd

)d∈N will be called a
graded normal form vector map. Clearly, such maps must be explicit if we are to
perform calculations with them.

The next proposition generalizes Proposition 2.4 and can be proved in the same way
(with the obvious changes).

Proposition 4.1. For every d ∈ N , let µd ≥ 1 and let ϕd : Pd −→ Kµd be a K -linear,
surjective map. The following conditions are equivalent.

a) The set ⊕
d∈N

Ker(ϕd) is a homogeneous ideal in P .

b) The tuple (ϕd)d∈N is a graded normal form vector map, i.e. there is a homogeneous
ideal I and tuples Od such that for every d ∈ N the map ϕd = NFVOd

.
c) For every d ∈ N , the map ϕd is the composition of a map NFVOσ,d

, where Oσ,d is
the degree d part of the complement of some leading term ideal, with a linear base
change Kµd −→ Kµd .

Let us see an example of a graded normal form vector map.

Example 4.2. Let P = K[x, y, z] , and let I ⊂ P be the ideal generated by G =
{x2 − 4xz + 4z2, xy − xz − 2yz + 2z2, y2 − 2yz + z2} , which is also the reduced Lex-
Gröbner basis of I . Macaulay’s Basis Theorem tells us that the residue classes of

O = T3 \ LTLex(I) = {zd | d ∈ N} ∪ x · {zd | d ∈ N} ∪ y · {zd | d ∈ N}

form a K -basis of P/I . Therefore, if we let Od = (zd, xzd−1, yzd−1) for all d ∈ N , we get
a graded normal form vector map (NFVOd

)d∈N where NFVOd
: Pd −→ K3 is given by

NFVOd
(f) = (a, b, c) such that NRG(f) = azd+bxzd−1+cyzd−1 is the normal remainder

returned by the Division Algorithm (see Kreuzer and Robbiano (2000), Section 1.6).

Now we examine the case when we have a finite number of graded normal form vector
maps as before. Let s ∈ N be a positive integer, and I1, . . . , Is be homogeneous ideals
in P . For each ideal Ii we have a collection of tuples Oi,d the residue classes of whose
components form a K -vector space basis of Pd/(Ii)d . Furthermore, we assume that
(NFVOi,d

)d∈N is an explicit graded normal form vector map for i = 1, . . . , s .
This is the setting for a generalized projective BM-algorithm. The main difference with

the affine case is that we need an extra piece of information for the termination of the
algorithm. Abstractly speaking, what we need is a stopping criterion.
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Definition 4.3. For a computation which proceeds degree by degree, a stopping crite-
rion is a logical condition which depends only on the data obtained in the computation
up to the current degree d , and which, if satisfied, guarantees that the complete result
has been attained.

For the computation of the homogeneous vanishing ideal of a zero-dimensional scheme
in Pn

K , the following simple stopping criterion can be used. Recall that the Hilbert
function of a standard graded K -algebra R is the map HFR : N −→ N defined by
i 7→ dimK(Ri). The basic properties of the Hilbert function HFP/I for one-dimensional
saturated homogeneous ideals I ⊂ P needed in the proof below can be found in (Kreuzer,
1994).

Proposition 4.4. (Naive Stopping Criterion)
In the setting of the generalized projective BM-algorithm, if the ideals I1, . . . , Is are
one-dimensional and saturated, then writing µi = mult (P/Ii) for each i , we can stop
the computation of I = I1 ∩ · · · ∩ Is after we have finished computing its homogeneous
generators of degree ≤ µ1 + · · ·+ µs .

Proof. The multiplicity of the ring P/I is µ ≤ µ1 + · · ·+µs . Since the ideals I1, . . . , Is
are saturated, the ring P/I is Cohen-Macaulay and its Hilbert function increases strictly
until it reaches the value µ in some degree d . From there on it is constant, i.e. we
have dimK(P/I)i = µ for i ≥ d . In particular, it is clear that HFP/I(i) = µ for
i ≥ µ−1. Since HFP/I = HFP/ LTσ(I) for every term ordering σ , it follows as in the proof
of (Abbott et al., 2000), Prop. 3.2, that LTσ(I) is generated in degrees ≤ µ . After we have
finished computing the homogeneous generators of I of degree ≤ µ , the ideal J = (I≤µ)
which they generate has therefore the leading term ideal LTσ(J) = LTσ(I), and we
conclude J = I . ut

In the paper (Abbott et al., 2000) we presented a stopping criterion which is usually
much better and which can be used in our situation, too. For completeness we restate it
here. We recall that two power products t, t′ are connected if there exist indeterminates
x, x′ such that x′t = xt′ .

Theorem 4.5. (Projective Stopping Criterion)
In the setting of the generalized projective BM-algorithm, let σ be a term ordering
on Tn+1 and let I = I1 ∩ · · · ∩ Is where the homogeneous ideals I1, . . . , Is are one-
dimensional and saturated. Moreover, suppose we have computed homogeneous polyno-
mials, each one lying in the intersection and whose leading terms generate (LTσ(I)≤d)
for some degree d ≥ 1 , and also that the following conditions hold:

a) HFP/ LTσ(I)(d) = mult(P/I1) + · · ·+ mult(P/Is) or
d > 0 and HFP/ LTσ(I)(d) = HFP/ LTσ(I)(d− 1)

b) For each i = 0, . . . , n , every power product in the connected component of xd
i in

(Tn+1 \ LTσ(I))d is divisible by xi .
Then the homogeneous polynomials computed so far are a σ -Gröbner basis of I .

Now we are ready to prove the main result of this section: the Generalized Projective
BM-Algorithm.
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Theorem 4.6. (Algorithm PBM)

In the above setting, let σ be a term ordering on the monoid Tn+1 of terms of
P = K[x0, . . . , xn] . Assume that there exists a function StoppingCriterion(G) which
returns TRUE if the set G computed so far is a σ -Gröbner basis of I = I1 ∩ · · · ∩ Is , and
FALSE otherwise.

Consider the following sequence of instructions.
PBM1 Start with empty lists G = [ ] , H = [ ] , a list L = [1] , and d = 0 .
PBM2 Apply the function StoppingCriterion(G) . If it returns TRUE, return the list G

and stop. Otherwise increase d by one, set M = (mij) to be a matrix over K with
zero rows and ` =

∑s
i=1 #(Oi,d) columns, and let L be the list of all terms of

degree d which are not multiples of any element of {LTσ(g) | g ∈ G} .
PBM3 If L = ∅ , go to step PBM2. Otherwise choose the term t = minσ(L) and remove

it from L .
PBM4 Compute the vector v = (NFVO1,d

(t) ⊕ . . . ⊕ NFVOs,d
(t)) ∈ K` and reduce it

against the rows of M to obtain

v∗ = v −
∑

i

ai (mi1, . . . ,mi`) with ai ∈ K

PBM5 If v∗ = (0, . . . , 0) , then append the polynomial t−
∑

i aihi to the list G , where
hi is the ith element of the list H . Continue with step PBM3.

PBM6 Otherwise v∗ 6= 0 , so append v∗ as a new row to M and t−
∑

i aihi as a new
element to H . Continue with step PBM3.

This is an algorithm which returns the reduced σ -Gröbner basis G of the ideal I =
I1 ∩ · · · ∩ Is .

Proof. This can be shown in the same way as Thm. 3.12 in (Abbott et al., 2000). We
note that v = (0, . . . , 0) is equivalent to f = t−

∑
i aihi ∈ Id , since the Chinese Remain-

der Theorem yields that f ∈ Id if and only if NFVO1,d
(f) = · · · = NFVOs,d

(f) = 0. ut

Remark 4.7. Let σ be a term ordering on Tn+1 , let X ⊂ Pn
K be a zero-dimensional

subscheme, let Supp(X) = {P1, . . . , Ps} , and, for i = 1, . . . , s , let Ii ⊂ P be the vanishing
ideal of X at Pi . Then the reduced σ -Gröbner basis of the homogeneous vanishing ideal
IX ⊂ P of X can be computed as follows.

1) For i = 1, . . . , s and d ∈ N , find a tuple Oi,d of homogeneous polynomials of
degree d and a map NFVOi,d

: Pd −→ Kµi,d such that (NFVOi,d
)d∈N is an effective

graded normal form vector map with kernel Ii . (For instance, one can compute a
σi -Gröbner basis Gi of Ii for some term ordering σi and use the normal remainder
map NRσi,Gi as in Example 4.2 to define NFVOi,d

.)
2) Apply algorithm PBM to this situation using the stopping criterion of Theorem 4.5.

Remark 4.8. As is well known An
K can be readily embedded into Pn

K , thus Algo-
rithms GBM and PBM are closely related. We may use Algorithm GBM instead of
Algorithm PBM if the chosen ordering σ is degree compatible and all the points as-
sociated to the input ideals have non-zero coordinate corresponding to the σ -smallest
indeterminate. In such special cases Algorithm GBM computes its answer doing less
arithmetic than Algorithm PBM.
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5. Modular Techniques

When we work over the base field K = Q , algorithms for computing Gröbner bases
like our algorithm GBM may perform poorly due to the problem of coefficient growth.
In a previous paper Abbott et al. (2000) we presented some modular methods to over-
come this difficulty in the BM-algorithm. More precisely, we presented a version of this
algorithm which computes the desired Gröbner bases modulo different primes and then
reconstructs the solution over Q using Chinese Remaindering techniques. The anal-
ogous development of algorithm GBM is impeded by the lack of a good criterion for
checking the correctness of the reconstructed basis.

Therefore we shall now present a different way of exploiting modular methods in al-
gorithm GBM — an idea similar in spirit to the method of Gröbner traces. The same
idea applies equally to algorithm PBM, but we shall leave it to the interested reader to
work out the details.

So, let K = Q , let n ≥ 1, let σ be a term ordering on P = K[x1, . . . , xn] , let s ∈ N
be a positive integer, and for i = 1, . . . , s let the zero-dimensional ideal Ii ⊂ P be given
by the vector wi ∈ K , and the multiplication matrices Mi1, . . . ,Min as described in
Definition 2.7. Moreover, let µi = dimK(P/Ii) for i = 1, . . . , s and µ = µ1 + · · ·+ µs .

Theorem 5.1. (Modular Version of the General BM-Algorithm)
In the above situation, consider the following sequence of instructions.
MBM1 Pick a prime number p ∈ N which does not divide the denominator of any entry

in the matrices Mij or in the vectors wi — so that reductions modulo p exist.
MBM2 Apply algorithm GBM over the field Fp to the modular reductions of the ma-

trices Mij and of the vectors wi . From the result we use only the tuple of power
products O = (t1, . . . , tν) , and Ĝ = (ĝ1, . . . , ĝr) , the tuple of the leading power
products of the computed Gröbner basis.

MBM3 Construct a ν ×µ matrix M over Q : each element ti ∈ O gives one row being
NFVO1(ti)⊕ · · · ⊕NFVOs(ti)

MBM4 Similarly construct a matrix R of size r × µ over Q whose ith row is the
concatenated normal form vectors of ĝi ∈ Ĝ .

MBM5 Now solve the linear systems LM = R over Q to obtain a matrix L = (λij) of
size r × ν .

MBM6 If the system in step MBM5 admits no solution then go back to step MBM1.
Otherwise form the polynomials gi = ĝi−

∑ν
j=1 λijtj for each power product ĝi ∈ Ĝ ,

and check whether λij = 0 for all indices j having tj >σ ĝi . If this is not the case,
go back to step MBM1. Otherwise let G = {g1, . . . , gr} , and return the pair (G,O) .

This is an algorithm which returns a list O whose components are precisely the elements
of Tn \LTσ(I) together with the reduced σ -Gröbner basis G of the ideal I = I1∩· · ·∩Is .

Proof. The basic idea behind this proof is to consider running two copies of algo-
rithm GBM, one on the inputs over Q , the other on the modular images in Fp . If the
two runs follow the same path then the final modular result is just the modular reduction
of the result over Q . Otherwise we consider the point where the two runs first differ, and
then deduce how to detect when the modular result is not good.

Let G0 and O0 denote the result algorithm GBM would produce over Q ; similarly let
Gp and Op denote the result over Fp . We shall also refer to M0 , the final value of the
matrix M used during the run of algorithm GBM over Q . To simplify later arguments we
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shall suppose that all entries in M0 are integer, this being achieved by multiplying each
row by its least common denominator — this assumption clearly does not affect the run
of algorithm GBM over Q . Further note that the rows of M0 are linearly independent
by construction, and so rank(M0) = ν where ν is the number of rows.

Of those primes satisfying the conditions in step MBM1 we shall say that a prime
p is good if Op = O0 , and otherwise the prime is bad. For a bad prime p we shall be
interested in the “first difference” between Op and O0 , i.e. the σ -smallest power product
t which appears in one but not both. In fact, we claim that t ∈ O0 and t 6∈ Op . For
suppose instead that t 6∈ O0 . This means that the row comprising the concatenated
normal form vectors of t is Q-linearly dependent on the rows corresponding to those
elements of O0 which are σ -less than t , equivalently there is a polynomial with rational
coefficients t −

∑
i µiti lying in the intsersection where each ti <σ t and ti ∈ O0 . Now

p does not divide the denominator of any coefficient µi since otherwise, multiplying by
the least power of p to remove all factors of p from the denominators would yield an
Fp -linear dependency among the rows corresponding to those elements of O0 which are
σ -less than t ; yet Op and O0 contain the same elements up to t , which means there
can be no Fp -linear dependency.

Now these preliminaries are over our proof has three parts: (i) there are only finitely
many bad primes, (ii) if the prime chosen in step MBM1 is bad then the checks in
step MBM6 will detect this, and (iii) if the prime chosen in step MBM1 is good then
the checks in step MBM6 will pass and the correct result will be returned.

(i) We first show that there are only finitely many bad primes. Suppose that Op 6=
O0 , and let t be the σ -smallest element of O0 not in Op . Thus over Fp the normal
form vector of t is linearly dependent on the normal form vectors of those elements
of O0 smaller than t . So in particular there is a linear relation modulo p between the
rows of M0 , so M0 is not of full rank modulo p . Thus all bad primes must divide the
determinants of all ν × ν minors of M0 , and hence the bad primes are only finite in
number.

(ii) Now we show that if the prime chosen in step MBM1 is bad then we discover
this in step MBM6. So assume that p is bad. If this leads to an insoluble linear system
in step MBM5 we detect this in step MBM6, and start anew with a different prime.
Otherwise a solution was found in step MBM5; if there are multiple solutions we may
pick any one. Let t be the σ -smallest element of O0 not in Op . The solution obtained
in step MBM5 has represented the normal form vector of t as a linear combination of
the rows of M . Now, the rows of M and M0 differ only by a non-zero scalar multiple,
so we also have a representation as a linear combination of the rows of M0 involving the
same rows. Since t ∈ O0 we know its row cannot be represented as a linear combination
of those rows of M0 corresponding solely to power products σ -smaller than t . Hence
the linear combination obtained for t must involve at least one row corresponding to a
power product σ -greater than t . And this is what we check for in step MBM6.

(iii) Now suppose that the prime chosen in step MBM1 is good. Thus we have Op = O0

at the end of step MBM2. The set Op uniquely determines Ĝ which, by its uniqueness,
must also be the set of leading power products of G0 . Hence the linear systems in
step MBM5 admit a solution: the coefficients of the elements of G0 give one solution.
Moreover these solutions are unique since the matrix M is of full rank: M is the same
as M0 up to multiplication of rows by non-zero scalars. This unique solution clearly
satisfies the test in step MBM6, and so the correct result is returned. ut
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Remark 5.2. Here we make some observations directed at potential implementers.

(a) If step MBM1 is executed several times (because the tests in step MBM6 fail) then
on each occasion we must pick a prime p different from those previously chosen.

(b) In step MBM2 the number of elements of O may be less than µ (e.g. if the input
ideals are not pairwise comaximal).

(c) In step MBM3 in our implementation we exploit the idea expounded in Remark 3.3;
the same idea can be used to compute the rows of R cheaply from the rows in M .

(d) In step MBM5 a sophisticated linear system solver will, in its turn, exploit modular
techniques (e.g. Hensel methods). Indeed the Gröbner basis discarded in step MBM2
could be used here, though this is unlikely to produce a measurable improvement
in speed.

(e) The order of the rows of the matrices M and R constructed in steps MBM3
and MBM4 is quite unimportant so long as the interpretation in step MBM6 is con-
sistent. Their rows are indexed by power products, and we can order these power
products in any convenient manner (the use of tuples in step MBM2 is intended to
indicate this).
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6. Complexity on Fat Points

In Section 3, we saw how one can compute the vanishing ideal of a zero-dimensional
subscheme X of an affine space An

K if we are given the zero-dimensional ideals defin-
ing X at the points of its support. Suppose some point p = (p1, . . . , pn) ∈ Supp(X)
is K -rational. Let m = (x1 − p1, . . . , xn − pn) be the corresponding maximal ideal of
K[x1, . . . , xn] , and let I ⊆ m be the ideal defining X at p . The following situation occurs
frequently.

Definition 6.1. The point p is called a fat point of X , if I = md for some d ≥ 1.
The number d is called the order of the fat point p . We say that X is a scheme of
fat points if Supp(X) is K -rational and every point of Supp(X) is a fat point of X (of
some order).

Remark 6.2. Reduced points are fat points of order one. Not all non-reduced points are
fat points; for instance, in A2 the point (0, 0) could be associated to the ideal I = (x, y2)
which is not a power of (x, y).

If the input ideals are ideals of fat points we can make step GBM3bis even faster. First
we consider fat points located at the origin (0, . . . , 0), then we observe that a simple
change of coordinates allows us to handle any fat point in much the same way. In fact,
the ideal of a fat point located at (0, . . . , 0) is a monomial ideal, and the observations
here apply to any monomial ideal.

Remark 6.3. Let I be a monomial ideal, then a natural K -vector space basis for P/I
is given by the set O of all power products xα1

1 · · ·xαn
n not divisible by any monomial

generator of I ; if I is the ideal of a fat point of order d then the quotient basis is generated
by all power products of degree < d . For this choice of basis the map NFVO : P −→ Kµ

is particularly easy to compute.
Furthermore, in step GBM3bis we compute NFVO(xjt

′) directly from NFVO(t′) by
matrix multiplication. Now, using the natural quotient basis for a monomial ideal we have
a special structure which permits us to replace the matrix multiplication by a simpler
process. Indeed v = NFVO(xjt

′) may be obtained from v′ = NFVO(t′) merely by
changing the position of some coordinates and setting the rest to zero: the entries of a
normal form vector are indexed by the power products in O , so the entry of v indexed
by t is zero if t is not divisible by xj , otherwise it is equal to the entry of v′ indexed
by t/xj . The necessary coordinate shifts can be effected optimally, in linear time, after
a simple preprocessing phase (with complexity O(nµ2)).

Remark 6.4. To handle a fat point located away from the origin at (p1, . . . , pn) we
use the change of coordinates xi 7→ xi + pi . Note that this coordinate change affects
step GBM3bis: the new normal form vector is now obtained by multiplying by xj + pj .
We can do this multiplication in linear time by using coordinate shifts to multiply by
xj , and then adding pj times NFVO(t′) to the result.

Remark 6.5. In general, for a fat point of order d located at (p1, . . . , p2), we have that
NFVO(xα1

1 · · ·xαn
n ) comprises exactly the coefficients of all terms of degree < d in the

polynomial (x1 + p1)α1 · · · (xn + pn)αn .
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The normal form vector map described in Remark 6.4 is sufficiently well specified
that we are able to analyse the complexity of Algorithm MBM in the special case of
ideals of fat points with disjoint support with integer coordinates. If all the points are in
fact simple then we obtain the same expected complexity as the algorithm in Abbott et
al. (2000).

We shall express the complexity in terms of the following parameters:

µ the sum of the multiplicities of the input ideals;
n the number of variables (i.e. the dimension of the ambient affine space);
r the number of elements in the Gröbner basis;
X a bound on the coordinates of the points supporting the ideals.

Note that since the fat points have disjoint support we know that the multiplicity of
the intersection is equal to the sum of the multiplicities of the input ideals; in general,
the sum is an upper bound.

Running Algorithm GBM over the finite field Fp has the same complexity as the
classical Buchberger-Möller algorithm: the only difference is the way in which each vector
v is computed, but the cost of reducing each vector exceeds the cost of creating it. We
recall from Abbott et al. (2000) that the complexity is O(µ2(r+µ)(log p)2 +µ2n2) where
the cost of an arithmetic operation in Fp is O((log p)2).

Lemma 6.6. Let p1, . . . , pn ∈ R and τ1, . . . , τn ∈ N . Put τ = τ1 + · · · + τn and f =∏
(xi + pi)τi . Then the coefficient in f of any term of degree d has magnitude bounded

by Bd the coefficient of xd in (x+B)τ for any B ≥ max{|p1|, . . . , |pn|} . In particular,
we have Bd ≤ (B + 1)τ whenever τ > 0 .

Proof. Let t be any power product. Then the magnitude of the coefficient of t in
f is clearly bounded by the coefficient of t in

∏n
i=1(xi + |pi|)τi , and this in turn is

clearly bounded by the coefficient of t in g =
∏n

i=1(xi + B)τi . For any degree d it is
an elementary induction on n to show that the coefficient of xd in (x+B)τ is the sum
of all coefficients of terms of degree d in g . Finally, every coefficient in (x + B)τ is
non-negative and the sum of these coefficients is (B + 1)τ , and therefore obviously an
upper bound. ut

Theorem 6.7. Let I1, I2, . . . , Is be ideals in Q[x1, . . . , xn] of fat points with disjoint
support at points with integer coordinates bounded by X . Let the multiplicity of each Ij
be µj , and put µ =

∑
µj . Supposing that the ideals are presented using the bases of

Remark 6.4 then Algorithm MBM has expected bit complexity:

O(µ5(r + µ) log2(X + 1) + µ2n2).

Furthermore, for “generic” fat points with the DegRevLex ordering, Algorithm MBM
has bit complexity

O(µ4d(r + µ) log2(X + 1) + µ2n2)

where d is such that
(
n+d−1

d

)
= r+µ ; this is better than the general expected complexity

by a factor of about µ/d .

Proof. Recall from the proof of Theorem 5.1 that a prime is bad if and only if it divides
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a certain determinant whose value is independent of the choice of prime. Consequently,
the probability of returning to step MBM1 at least n times is bounded above by 2−n (an
upper bound for the probability that the determinant is divisible by each of the n primes
chosen). Furthermore for a fixed input and a given prime p the cost of an iteration is in
O(log2 p). Thus provided the primes chosen do not vary wildly in size the expected cost
is bounded by a constant times the cost of a single iteration. Our proof is completed by
assuming the prime chosen in step MBM1 is good and then showing that each step of
Algorithm MBM has cost not exceeding the complexity claimed above.

Steps MBM1 and MBM6 have negligible cost. The cost of the computation over Fp in
step MBM2 is also dominated by the claimed complexity provided log p ≤ µ

√
µ logX ,

i.e. we must not pick huge primes.
We now estimate the cost of steps MBM3 and MBM4. We first estimate the cost of

creating a single row of M (or R). Using the method of Remark 6.4 we do at most µ mul-
tiplications between an integer of size O(logX) and another of size at most O(log(Xµ)),
giving a total cost of O(µ2 log2X) per row. Altogether there are r + µ rows, so their
combined cost remains less than the claimed complexity.

Finally, we estimate the cost of solving the linear systems in step MBM5. We use
Remark 6.5 to bound the size of the entries of the matrices M and R which are necessarily
integer. The entries in M come from normal form vectors of power products of total
degree not exceeding µ − 1; similarly for the entries in R except that the degree may
be as high as µ . We shall use Cramer’s rule and Hadamard’s bound on determinants to
estimate the size of solutions to the linear system.

To use Hadamard’s bound we need to calculate the Euclidean length of each row in M
and in R . Consider a row corresponding to a power product t of degree τ > 0. By
Remark 6.5 and Lemma 6.6 the normal form vector of t with respect to any of the ideals
Ij contains entries of magnitude at most (X + 1)τ . Hence the Euclidean length of the
entire row is at most (X + 1)τ√µ . For a row in M we can take τ = µ− 1, and a for a
row in R we take instead τ = µ .

By Cramer’s rule every coordinate of any solution vector in the system solved in
step MBM5 has numerator bounded by

√
µµ(X + 1)µ2−µ+1 ∈ O((X + 1)µ2

), and de-
nominator bounded by

√
µµ(X + 1)µ2−µ ∈ O((X + 1)µ2

). Hence the system can be
solved using Chinese Remaindering techniques in time O(µ5(r + µ) log2(X + 1)) which
is bounded by the claimed complexity.

In the generic case with the ordering DegRevLex we can take advantage of the fact
that the highest degree power product appearing in the algorithm is typically far smaller
than µ . In fact, we need to go only as far as degree d where d is the smallest integer for
which

(
n+d

d

)
≥ r + µ . The reasoning above then allows us to reduce the complexity by

a factor of d/µ , except for the contribution µ2n2 (arising from the generation of power
products within the call to Algorithm GBM). ut

Remark 6.8. The worst case complexity is max(X2, µ2) times the expected complexity,
but is realised with exceedingly low probability. The product of the first k primes clearly
exceeds k! whose logarithm lies in O(k log k). Hence there can be at most max(X2, µ2)
bad primes.

Remark 6.9. A more general analysis is difficult to manage because of the freedom of
choice of the representation of an ideal using a normal form vector map. However, the
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formula of Theorem 6.7 still applies in the case where the ideals are given by integer
vectors wi of bounded length, and multiplication matrices Mij with integer entries and
all of whose rows have 1-norm bounded by X + 1. This is because the crucial part of
the proof is the estimation of the sizes of the entries in the matrices M and R , and we
can easily obtain the same estimates in this case.
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7. Implementation Issues and Timing

Here we comment briefly on the differences between the new algorithm MBM and the
old algorithm M we gave in Abbott et al. (2000). Foremost, the new algorithm is more
general than the old one since it can be applied to any intersection of zero-dimensional
ideals. Another notable difference is that in the new algorithm the “lifting” of the modular
result is implicit in the process of solving the linear systems in step MBM5 whereas the
“lifting” was an integral part of the old algorithm. Furthermore, the new algorithm is
able to benefit directly and immediately from any improvement to algorithms for solving
linear systems; instead the old algorithm could benefit only if such improvements can be
fitted into its scheme.

The following tables give the timings for computing the intersections of various random
ideals of non-simple points. The times reported are in seconds and represent averages of
ten cases run on a 433 MHz Digital Alpha with 192Mb RAM; the code was compiled
with gcc -O2. The timings reported in the tables below are a small selection; there are
too many parameters to give comprehensive results. We have arbitrarily fixed the term
ordering to be DegRevLex, the ambient spaces were chosen to be A3

Q and P3
Q , and the

coordinates of the points are random integers between −99 and 99.
We do not give a table comparing the new implementation in the reduced case with

that described in Abbott et al. (2000) since on all examples tried the times were virtually
identical.

The table rows labelled “Order 2” give times for computing the intersection of ideals of
fat points of order 2; those labelled “Order 3” give times for computing the intersection
of ideals of fat points of order 3; and the row labelled “non-monomial” gives the times
for computing the intersection of non-monomial zero-dimensional ideals of multiplicity
10 (the same multiplicity as for a fat point of order 3). The last column gives the size
of the largest coefficient in the resulting Gröbner basis for the intersection of 15 ideals.
In all cases the time spent constructing the multiplication matrices was excluded.

The Affine Case

DegRevLex 5 pts 10 pts 15 pts 15 pts
Order 2 0.1 s 1.3 s 5.5 s 330 digits

Order 3 1.4 s 28 s 140 s 1100 digits

non-monomial 3.4 s 43 s 210 s 1250 digits

The Projective Case

DegRevLex 5 pts 10 pts 15 pts 15 pts
Order 2 0.6 s 4.2 s 15.3 s 500 digits

Order 3 3.9 s 68 s 340 s 1600 digits

In section 6 we observed that the ideal of a fat point is a monomial ideal under some
change of coordinates. The non-monomial ideals used in these tests are ideals which
cannot be obtained by applying a change of coordinates to a monomial ideal.
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